

SIMPLE DMRG

Source code: https://github.com/simple-dmrg/simple-dmrg/

Documentation: http://simple-dmrg.readthedocs.org/

The goal of this tutorial (given at the 2013 summer school on quantum
spin liquids [http://www.democritos.it/qsl2013/], in Trieste, Italy)
is to present the density-matrix renormalization group [http://en.wikipedia.org/wiki/Density_matrix_renormalization_group]
(DMRG) in its traditional formulation (i.e. without using matrix
product states). DMRG is a numerical method that allows for the
efficient simulation of quantum model Hamiltonians. Since it is a
low-entanglement approximation, it often works quite well for
one-dimensional systems, giving results that are nearly exact.

Typical implementations of DMRG in C++ or Fortran can be tens of
thousands of lines long. Here, we have attempted to strike a balance
between clear, simple code, and including many features and
optimizations that would exist in a production code. One thing that
helps with this is the use of Python [http://www.python.org/]. We
have tried to write the code in a very explicit style, hoping that it
will be (mostly) understandable to somebody new to Python. (See also
the included Python cheatsheet, which lists
many of the Python features used by simple-dmrg, and which should
be helpful when trying the included exercises.)

The four modules build up DMRG from its simplest implementation to
more complex implementations and optimizations. Each file adds lines
of code and complexity compared with the previous version.

	Infinite system algorithm
(~180 lines, including comments)

	Finite system algorithm
(~240 lines)

	Conserved quantum numbers
(~310 lines)

	Eigenstate prediction
(~370 lines)

Throughout the tutorial, we focus on the spin-1/2 Heisenberg XXZ
model [http://en.wikipedia.org/wiki/Heisenberg_model_(quantum)], but
the code could easily be modified (or expanded) to work with other
models.

Authors

	James R. Garrison (UCSB)

	Ryan V. Mishmash (UCSB)

Licensed under the MIT license. If you plan to publish work based on
this code, please contact us to find out how to cite us.

Contents

	Using the code

	Exercises
	Day 1

	Day 2

	Python cheatsheet
	Basics

	Lists, tuples, and loops

	Dictionaries

	Functions

	numpy arrays

	Mathematical constants

	Experimentation and getting help

	Additional information on DMRG
	References

	Links

	Source code
	simple_dmrg_01_infinite_system.py

	simple_dmrg_02_finite_system.py

	simple_dmrg_03_conserved_quantum_numbers.py

	simple_dmrg_04_eigenstate_prediction.py

Using the code

The requirements are:

	Python [http://www.python.org/] 2.6 or higher (Python 3 works as well)

	numpy [http://www.numpy.org/] and scipy [http://www.scipy.org/]

Download the code using the Download ZIP [https://github.com/simple-dmrg/simple-dmrg/archive/master.zip]
button on github, or run the following command from a terminal:

$ wget -O simple-dmrg-master.zip https://github.com/simple-dmrg/simple-dmrg/archive/master.zip

Within a terminal, execute the following to unpack the code:

$ unzip simple-dmrg-master.zip
$ cd simple-dmrg-master/

Once the relevant software is installed, each program is contained
entirely in a single file. The first program, for instance, can be
run by issuing:

$ python simple_dmrg_01_infinite_system.py

Note

If you see an error that looks like this:

SyntaxError: future feature print_function is not defined

then you are using a version of Python below 2.6. Although it
would be best to upgrade, it may be possible to make the code work
on Python versions below 2.6 without much trouble.

Exercises

Day 1

	Consider a reduced density matrix [image: \rho] corresponding to a maximally mixed state in a Hilbert space of dimension [image: md]. Compute the truncation error associated with keeping only the largest m eigenvectors of [image: \rho]. Fortunately, the reduced density matrix eigenvalues for ground states of local Hamiltonians decay much more quickly!

	Explore computing the ground state energy of the Heisenberg model using the infinite system algorithm. The exact Bethe ansatz result in the thermodynamic limit is [image: E/L = 0.25 - \ln 2 = -0.443147]. Note the respectable accuracy obtained with an extremely small block basis of size [image: m \sim 10]. Why does the DMRG work so well in this case?

	Entanglement entropy:

	Calculate the bipartite (von Neumann) entanglement entropy at the center of the chain during the infinite system algorithm. How does it scale with [image: L]?

	Now, using the finite system algorithm, calculate the bipartite entanglement entropy for every bipartite splitting. How does it scale with subsystem size [image: x]?

Hint

To create a simple plot in python:

>>> from matplotlib import pyplot as plt
>>> x_values = [1, 2, 3, 4]
>>> y_values = [4, 2, 7, 3]
>>> plt.plot(x_values, y_values)
>>> plt.show()

	From the above, estimate the central charge [image: c] of the “Bethe phase” (1D quasi-long-range Néel phase) of the 1D Heisenberg model, and in light of that, think again about your answer to the last part of exercise 2.

The formula for fitting the central charge on a system with open boundary conditions is:

[image: S = \frac{c}{6} \ln \left[\frac{L}{\pi} \sin \left(\frac{\pi x}{L} \right) \right] + A]

where [image: S] is the von Neumann entropy.

Hint

To fit a line in python:

>>> x_values = [1, 2, 3, 4]
>>> y_values = [-4, -2, 0, 2]
>>> slope, y_intercept = np.polyfit(x_values, y_values, 1)

	XXZ model:

	Change the code (ever so slightly) to accommodate spin-exchange anisotropy: [image: H = \sum_{\langle ij \rangle} \left[\frac{J}{2} (S_i^+ S_j^- + \mathrm{h.c.}) + J_z S_i^z S_j^z \right]].

	For [image: J_z/J > 1] ([image: J_z/J < -1]), the ground state is known to be an Ising antiferromagnet (ferromagnet), and thus fully gapped.
Verify this by investigating scaling of the entanglement entropy as in exercise 3. What do we expect for the central charge in this case?

Day 2

	Using simple_dmrg_03_conserved_quantum_numbers.py, calculate the “spin gap” [image: E_0(S_z=1) - E_0(S_z=0)]. How does the gap scale with [image: 1/L]? Think about how you would go about computing the spectral gap in the [image: S_z=0] sector: [image: E_1(S_z=0) - E_0(S_z=0)], i.e., the gap between the ground state and first excited state within the [image: S_z=0] sector.

	Calculate the total weight of each [image: S_z] sector in the enlarged system block after constructing each block of [image: \rho]. At this point, it’s important to fully understand why [image: \rho] is indeed block diagonal, with blocks labeled by the total quantum number [image: S_z] for the enlarged system block.

	Starting with simple_dmrg_02_finite_system.py, implement a spin-spin correlation function measurement of the free two sites at each step in the finite system algorithm, i.e., calculate [image: \langle\vec{S}_{i}\cdot\vec{S}_{i+1}\rangle] for all [image: i]. In exercise 3 of yesterday’s tutorial, you should have noticed a strong period-2 oscillatory component of the entanglement entropy. With your measurement of [image: \langle\vec{S}_{i}\cdot\vec{S}_{i+1}\rangle], can you now explain this on physical grounds?

Answer:
finite_system_algorithm(L=20, m_warmup=10, m_sweep_list=[10, 20, 30, 40, 40]) with [image: J = J_z = 1] should give [image: \langle \vec{S}_{10} \cdot \vec{S}_{11} \rangle = -0.363847565413] on the last step.

	Implement the “ring term” [image: H_\mathrm{ring} = K \sum_i S^z_{i} S^z_{i+1} S^z_{i+2} S^z_{i+3}]. Note that this term is one of the pieces of the SU(2)-invariant four-site ring-exchange operator for sites ([image: i], [image: i+1], [image: i+2], [image: i+3]), a term which is known to drive the [image: J_1]-[image: J_2] Heisenberg model on the two-leg triangular strip into a quasi-1D descendant of the spinon Fermi sea (“spin Bose metal”) spin liquid [see http://arxiv.org/abs/0902.4210].

Answer:
finite_system_algorithm(L=20, m_warmup=10, m_sweep_list=[10, 20, 30, 40, 40]) with [image: K = J = 1], should give [image: E/L = -0.40876250668].

Python cheatsheet

[designed specifically for understanding and modifying simple-dmrg]

For a programmer, the standard, online Python tutorial [http://docs.python.org/3/tutorial/] is quite nice. Below, we try
to mention a few things so that you can get acquainted with the
simple-dmrg code as quickly as possible.

Python includes a few powerful internal data structures (lists,
tuples, and dictionaries), and we use numpy (numeric python) and
scipy (additional “scientific” python routines) for linear
algebra.

Basics

Unlike many languages where blocks are denoted by braces or special
end statements, blocks in python are denoted by indentation level.
Thus indentation and whitespace are significant in a python program.

It is possible to execute python directly from the commandline:

$ python

This will bring you into python’s real-eval-print loop (REPL). From
here, you can experiment with various commands and expressions. The
examples below are taken from the REPL, and include the prompts
(“>>>” and “...”) one would see there.

Lists, tuples, and loops

The basic sequence data types in python are lists and tuples.

A list can be constructed literally:

>>> x_list = [2, 3, 5, 7]

and a number of operations can be performed on it:

>>> len(x_list)
4

>>> x_list.append(11)
>>> x_list
[2, 3, 5, 7, 11]

>>> x_list[0]
2

>>> x_list[0] = 0
>>> x_list
[0, 3, 5, 7, 11]

Note, in particular, that python uses indices counting from zero, like C (but unlike Fortran and Matlab).

A tuple in python acts very similarly to a list, but once it is constructed it cannot be modified. It is constructed using parentheses instead of brackets:

>>> x_tuple = (2, 3, 5, 7)

Lists and tuples can contain any data type, and the data type of the elements need not be consistent:

>>> x = ["hello", 4, 8, (23, 12)]

It is also possible to get a subset of a list (e.g. the first three
elements) by using Python’s slice notation [http://stackoverflow.com/questions/509211/pythons-slice-notation]:

>>> x = [2, 3, 5, 7, 11]
>>> x[:3]
[2, 3, 5]

Looping over lists and tuples

Looping over a list or tuple is quite straightforward:

>>> x_list = [5, 7, 9, 11]
>>> for x in x_list:
... print(x)
...
5
7
9
11

If you wish to have the corresponding indices for each element of the
list, the enumerate() function will provide this:

>>> x_list = [5, 7, 9, 11]
>>> for i, x in enumerate(x_list):
... print(i, x)
...
0 5
1 7
2 9
3 11

If you have two (or more) parallel arrays with the same number of
elements and you want to loop over each of them at once, use the
zip() function:

>>> x_list = [2, 3, 5, 7]
>>> y_list = [12, 13, 14, 15]
>>> for x, y in zip(x_list, y_list):
... print(x, y)
...
2 12
3 13
5 14
7 15

There is a syntactic shortcut for transforming a list into a new one,
known as a list comprehension [http://docs.python.org/3/tutorial/datastructures.html#list-comprehensions]:

>>> primes = [2, 3, 5, 7]
>>> doubled_primes = [2 * x for x in primes]
>>> doubled_primes
[4, 6, 10, 14]

Dictionaries

Dictionaries are python’s powerful mapping data type. A number,
string, or even a tuple can be a key, and any data type can be the
corresponding value.

Literal construction syntax:

>>> d = {2: "two", 3: "three"}

Lookup syntax:

>>> d[2]
'two'
>>> d[3]
'three'

Modifying (or creating) elements:

>>> d[4] = "four"
>>> d
{2: 'two', 3: 'three', 4: 'four'}

The method get() is another way to lookup an element, but returns
the special value None if the key does not exist (instead of
raising an error):

>>> d.get(2)
'two'
>>> d.get(4)

Looping over dictionaries

Looping over the keys of a dictionary:

>>> d = {2: "two", 3: "three"}
>>> for key in d:
... print(key)
...
2
3

Looping over the values of a dictionary:

>>> d = {2: "two", 3: "three"}
>>> for value in d.values():
... print(value)
...
two
three

Looping over the keys and values, together:

>>> d = {2: "two", 3: "three"}
>>> for key, value in d.items():
... print(key, value)
...
2 two
3 three

Functions

Function definition in python uses the def keyword:

>>> def f(x):
... y = x + 2
... return 2 * y + x
...

Function calling uses parentheses, along with any arguments to be passed:

>>> f(2)
10
>>> f(3)
13

When calling a function, it is also possibly to specify the arguments by name (e.g. x=4):

>>> f(x=4)
16

An alternative syntax for writing a one-line function is to use python’s lambda keyword:

>>> g = lambda x: 3 * x
>>> g(5)
15

numpy arrays

numpy provides a multi-dimensional array type. Unlike lists and
tuples, numpy arrays have fixed size and hold values of a single
data type. This allows the program to perform operations on large
arrays very quickly.

Literal construction of a 2x2 matrix:

>>> np.array([[1, 2], [3, 4]], dtype='d')
array([[1., 2.],
 [3., 4.]])

Note that dtype='d' specifies that the type of the array should
be double-precision (real) floating point.

It is also possibly to construct an array of all zeros:

>>> np.zeros([3, 4], dtype='d')
array([[0., 0., 0., 0.],
 [0., 0., 0., 0.],
 [0., 0., 0., 0.]])

And then elements can be added one-by-one:

>>> x = np.zeros([3, 4], dtype='d')
>>> x[1, 2] = 12
>>> x[1, 3] = 18
>>> x
array([[0., 0., 0., 0.],
 [0., 0., 12., 18.],
 [0., 0., 0., 0.]])

It is possible to access a given row or column by index:

>>> x[1, :]
array([0., 0., 12., 18.])
>>> x[:, 2]
array([0., 12., 0.])

or to access multiple columns (or rows) at once:

>>> col_indices = [2, 1, 3]
>>> x[:, col_indices]
array([[0., 0., 0.],
 [12., 0., 18.],
 [0., 0., 0.]])

For matrix-vector (or matrix-matrix) multiplication use the
np.dot() function:

>>> np.dot(m, v)

Warning

One tricky thing about numpy arrays is that they do not act as
matrices by default. In fact, if you multiply two numpy
arrays, python will attempt to multiply them element-wise!

To take an inner product, you will need to take the
transpose-conjugate of the left vector yourself:

>>> np.dot(v1.conjugate().transpose(), v2)

Array storage order

Although a numpy array acts as a multi-dimensional object, it is
actually stored in memory as a one-dimensional contiguous array.
Roughly speaking, the elements can either be stored column-by-column
(“column major”, or “Fortran-style”) or row-by-row (“row major”, or
“C-style”). As long as we understand the underlying storage order of
an array, we can reshape it to have different dimensions. In
particular, the logic for taking a partial trace in simple-dmrg
uses this reshaping to make the system and environment basis elements
correspond to the rows and columns of the matrix, respectively. Then,
only a simple matrix multiplication is required to find the reduced
density matrix.

Mathematical constants

numpy also provides a variety of mathematical constants:

>>> np.pi
3.141592653589793
>>> np.e
2.718281828459045

Experimentation and getting help

As mentioned above, python’s REPL can be quite useful for
experimentation and getting familiar with the language. Another thing
we can do is to import the simple-dmrg code directly into the REPL
so that we can experiment with it directly. The line:

>>> from simple_dmrg_01_infinite_system import *

will execute all lines except the ones within the block that says:

if __name__ == "__main__":

So if we want to use the finite system algorithm, we can (assuming our
source tree is in the PYTHONPATH, which should typically include
the current directory):

$ python
>>> from simple_dmrg_04_eigenstate_prediction import *
>>> finite_system_algorithm(L=10, m_warmup=8, m_sweep_list=[8, 8, 8])

It is also possible to get help in the REPL by using python’s built-in
help() function on various objects, functions, and types:

>>> help(sum) # help on python's sum function

>>> help([]) # python list methods
>>> help({}) # python dict methods

>>> help({}.setdefault) # help on a specific dict method

>>> import numpy as np
>>> help(np.log) # natural logarithm
>>> help(np.linalg.eigh) # eigensolver for hermitian matrices

Additional information on DMRG

Below is an incomplete list of resources for learning DMRG.

References

	“An introduction to numerical methods in low-dimensional quantum
systems [http://arxiv.org/abs/cond-mat/0304375]”
by A. L. Malvezzi (2003) teaches DMRG concisely but in enough detail
to understand the simple-dmrg code.

	U. Schollwöck has written two review articles on DMRG. The first
(from 2005) [http://arxiv.org/abs/cond-mat/0409292] focuses on
DMRG in its traditional formulation, while the second (from 2011) [http://arxiv.org/abs/1008.3477] describes it in terms of matrix
product states.

	Steve White’s papers, including the original DMRG paper (1992) [http://prl.aps.org/abstract/PRL/v69/i19/p2863_1], a more
in-depth paper (1993) [http://prb.aps.org/abstract/PRB/v48/i14/p10345_1] which includes
(among other things) periodic boundary conditions, and a later
paper (1996) [http://arxiv.org/abs/cond-mat/9604129] which
describes eigenstate prediction, are quite useful.

Links

	The dmrg101 tutorial [http://dmrg101.readthedocs.org/] by Iván
González, was prepared for the Taipai DMRG winter school [http://sites.google.com/site/dmrg101/home].

	sophisticated-dmrg [https://github.com/simple-dmrg/sophisticated-dmrg], a more
“sophisticated” program based on this tutorial.

Source code

Formatted versions of the source code are available in this section.
See also the github repository [https://github.com/simple-dmrg/simple-dmrg], which contains all the
included code.

	simple_dmrg_01_infinite_system.py

	simple_dmrg_02_finite_system.py

	simple_dmrg_03_conserved_quantum_numbers.py

	simple_dmrg_04_eigenstate_prediction.py

simple_dmrg_01_infinite_system.py

(Raw download)

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

	#!/usr/bin/env python
#
Simple DMRG tutorial. This code contains a basic implementation of the
infinite system algorithm
#
Copyright 2013 James R. Garrison and Ryan V. Mishmash.
Open source under the MIT license. Source code at
<https://github.com/simple-dmrg/simple-dmrg/>

This code will run under any version of Python >= 2.6. The following line
provides consistency between python2 and python3.
from __future__ import print_function, division # requires Python >= 2.6

numpy and scipy imports
import numpy as np
from scipy.sparse import kron, identity
from scipy.sparse.linalg import eigsh # Lanczos routine from ARPACK

We will use python's "namedtuple" to represent the Block and EnlargedBlock
objects
from collections import namedtuple

Block = namedtuple("Block", ["length", "basis_size", "operator_dict"])
EnlargedBlock = namedtuple("EnlargedBlock", ["length", "basis_size", "operator_dict"])

def is_valid_block(block):
 for op in block.operator_dict.values():
 if op.shape[0] != block.basis_size or op.shape[1] != block.basis_size:
 return False
 return True

This function should test the same exact things, so there is no need to
repeat its definition.
is_valid_enlarged_block = is_valid_block

Model-specific code for the Heisenberg XXZ chain
model_d = 2 # single-site basis size

Sz1 = np.array([[0.5, 0], [0, -0.5]], dtype='d') # single-site S^z
Sp1 = np.array([[0, 1], [0, 0]], dtype='d') # single-site S^+

H1 = np.array([[0, 0], [0, 0]], dtype='d') # single-site portion of H is zero

def H2(Sz1, Sp1, Sz2, Sp2): # two-site part of H
 """Given the operators S^z and S^+ on two sites in different Hilbert spaces
 (e.g. two blocks), returns a Kronecker product representing the
 corresponding two-site term in the Hamiltonian that joins the two sites.
 """
 J = Jz = 1.
 return (
 (J / 2) * (kron(Sp1, Sp2.conjugate().transpose()) + kron(Sp1.conjugate().transpose(), Sp2)) +
 Jz * kron(Sz1, Sz2)
)

conn refers to the connection operator, that is, the operator on the edge of
the block, on the interior of the chain. We need to be able to represent S^z
and S^+ on that site in the current basis in order to grow the chain.
initial_block = Block(length=1, basis_size=model_d, operator_dict={
 "H": H1,
 "conn_Sz": Sz1,
 "conn_Sp": Sp1,
})

def enlarge_block(block):
 """This function enlarges the provided Block by a single site, returning an
 EnlargedBlock.
 """
 mblock = block.basis_size
 o = block.operator_dict

 # Create the new operators for the enlarged block. Our basis becomes a
 # Kronecker product of the Block basis and the single-site basis. NOTE:
 # `kron` uses the tensor product convention making blocks of the second
 # array scaled by the first. As such, we adopt this convention for
 # Kronecker products throughout the code.
 enlarged_operator_dict = {
 "H": kron(o["H"], identity(model_d)) + kron(identity(mblock), H1) + H2(o["conn_Sz"], o["conn_Sp"], Sz1, Sp1),
 "conn_Sz": kron(identity(mblock), Sz1),
 "conn_Sp": kron(identity(mblock), Sp1),
 }

 return EnlargedBlock(length=(block.length + 1),
 basis_size=(block.basis_size * model_d),
 operator_dict=enlarged_operator_dict)

def rotate_and_truncate(operator, transformation_matrix):
 """Transforms the operator to the new (possibly truncated) basis given by
 `transformation_matrix`.
 """
 return transformation_matrix.conjugate().transpose().dot(operator.dot(transformation_matrix))

def single_dmrg_step(sys, env, m):
 """Performs a single DMRG step using `sys` as the system and `env` as the
 environment, keeping a maximum of `m` states in the new basis.
 """
 assert is_valid_block(sys)
 assert is_valid_block(env)

 # Enlarge each block by a single site.
 sys_enl = enlarge_block(sys)
 if sys is env: # no need to recalculate a second time
 env_enl = sys_enl
 else:
 env_enl = enlarge_block(env)

 assert is_valid_enlarged_block(sys_enl)
 assert is_valid_enlarged_block(env_enl)

 # Construct the full superblock Hamiltonian.
 m_sys_enl = sys_enl.basis_size
 m_env_enl = env_enl.basis_size
 sys_enl_op = sys_enl.operator_dict
 env_enl_op = env_enl.operator_dict
 superblock_hamiltonian = kron(sys_enl_op["H"], identity(m_env_enl)) + kron(identity(m_sys_enl), env_enl_op["H"]) + \
 H2(sys_enl_op["conn_Sz"], sys_enl_op["conn_Sp"], env_enl_op["conn_Sz"], env_enl_op["conn_Sp"])

 # Call ARPACK to find the superblock ground state. ("SA" means find the
 # "smallest in amplitude" eigenvalue.)
 (energy,), psi0 = eigsh(superblock_hamiltonian, k=1, which="SA")

 # Construct the reduced density matrix of the system by tracing out the
 # environment
 #
 # We want to make the (sys, env) indices correspond to (row, column) of a
 # matrix, respectively. Since the environment (column) index updates most
 # quickly in our Kronecker product structure, psi0 is thus row-major ("C
 # style").
 psi0 = psi0.reshape([sys_enl.basis_size, -1], order="C")
 rho = np.dot(psi0, psi0.conjugate().transpose())

 # Diagonalize the reduced density matrix and sort the eigenvectors by
 # eigenvalue.
 evals, evecs = np.linalg.eigh(rho)
 possible_eigenstates = []
 for eval, evec in zip(evals, evecs.transpose()):
 possible_eigenstates.append((eval, evec))
 possible_eigenstates.sort(reverse=True, key=lambda x: x[0]) # largest eigenvalue first

 # Build the transformation matrix from the `m` overall most significant
 # eigenvectors.
 my_m = min(len(possible_eigenstates), m)
 transformation_matrix = np.zeros((sys_enl.basis_size, my_m), dtype='d', order='F')
 for i, (eval, evec) in enumerate(possible_eigenstates[:my_m]):
 transformation_matrix[:, i] = evec

 truncation_error = 1 - sum([x[0] for x in possible_eigenstates[:my_m]])
 print("truncation error:", truncation_error)

 # Rotate and truncate each operator.
 new_operator_dict = {}
 for name, op in sys_enl.operator_dict.items():
 new_operator_dict[name] = rotate_and_truncate(op, transformation_matrix)

 newblock = Block(length=sys_enl.length,
 basis_size=my_m,
 operator_dict=new_operator_dict)

 return newblock, energy

def infinite_system_algorithm(L, m):
 block = initial_block
 # Repeatedly enlarge the system by performing a single DMRG step, using a
 # reflection of the current block as the environment.
 while 2 * block.length < L:
 print("L =", block.length * 2 + 2)
 block, energy = single_dmrg_step(block, block, m=m)
 print("E/L =", energy / (block.length * 2))

if __name__ == "__main__":
 np.set_printoptions(precision=10, suppress=True, threshold=10000, linewidth=300)

 infinite_system_algorithm(L=100, m=20)

simple_dmrg_02_finite_system.py

(Raw download)

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

	#!/usr/bin/env python
#
Simple DMRG tutorial. This code integrates the following concepts:
- Infinite system algorithm
- Finite system algorithm
#
Copyright 2013 James R. Garrison and Ryan V. Mishmash.
Open source under the MIT license. Source code at
<https://github.com/simple-dmrg/simple-dmrg/>

This code will run under any version of Python >= 2.6. The following line
provides consistency between python2 and python3.
from __future__ import print_function, division # requires Python >= 2.6

numpy and scipy imports
import numpy as np
from scipy.sparse import kron, identity
from scipy.sparse.linalg import eigsh # Lanczos routine from ARPACK

We will use python's "namedtuple" to represent the Block and EnlargedBlock
objects
from collections import namedtuple

Block = namedtuple("Block", ["length", "basis_size", "operator_dict"])
EnlargedBlock = namedtuple("EnlargedBlock", ["length", "basis_size", "operator_dict"])

def is_valid_block(block):
 for op in block.operator_dict.values():
 if op.shape[0] != block.basis_size or op.shape[1] != block.basis_size:
 return False
 return True

This function should test the same exact things, so there is no need to
repeat its definition.
is_valid_enlarged_block = is_valid_block

Model-specific code for the Heisenberg XXZ chain
model_d = 2 # single-site basis size

Sz1 = np.array([[0.5, 0], [0, -0.5]], dtype='d') # single-site S^z
Sp1 = np.array([[0, 1], [0, 0]], dtype='d') # single-site S^+

H1 = np.array([[0, 0], [0, 0]], dtype='d') # single-site portion of H is zero

def H2(Sz1, Sp1, Sz2, Sp2): # two-site part of H
 """Given the operators S^z and S^+ on two sites in different Hilbert spaces
 (e.g. two blocks), returns a Kronecker product representing the
 corresponding two-site term in the Hamiltonian that joins the two sites.
 """
 J = Jz = 1.
 return (
 (J / 2) * (kron(Sp1, Sp2.conjugate().transpose()) + kron(Sp1.conjugate().transpose(), Sp2)) +
 Jz * kron(Sz1, Sz2)
)

conn refers to the connection operator, that is, the operator on the edge of
the block, on the interior of the chain. We need to be able to represent S^z
and S^+ on that site in the current basis in order to grow the chain.
initial_block = Block(length=1, basis_size=model_d, operator_dict={
 "H": H1,
 "conn_Sz": Sz1,
 "conn_Sp": Sp1,
})

def enlarge_block(block):
 """This function enlarges the provided Block by a single site, returning an
 EnlargedBlock.
 """
 mblock = block.basis_size
 o = block.operator_dict

 # Create the new operators for the enlarged block. Our basis becomes a
 # Kronecker product of the Block basis and the single-site basis. NOTE:
 # `kron` uses the tensor product convention making blocks of the second
 # array scaled by the first. As such, we adopt this convention for
 # Kronecker products throughout the code.
 enlarged_operator_dict = {
 "H": kron(o["H"], identity(model_d)) + kron(identity(mblock), H1) + H2(o["conn_Sz"], o["conn_Sp"], Sz1, Sp1),
 "conn_Sz": kron(identity(mblock), Sz1),
 "conn_Sp": kron(identity(mblock), Sp1),
 }

 return EnlargedBlock(length=(block.length + 1),
 basis_size=(block.basis_size * model_d),
 operator_dict=enlarged_operator_dict)

def rotate_and_truncate(operator, transformation_matrix):
 """Transforms the operator to the new (possibly truncated) basis given by
 `transformation_matrix`.
 """
 return transformation_matrix.conjugate().transpose().dot(operator.dot(transformation_matrix))

def single_dmrg_step(sys, env, m):
 """Performs a single DMRG step using `sys` as the system and `env` as the
 environment, keeping a maximum of `m` states in the new basis.
 """
 assert is_valid_block(sys)
 assert is_valid_block(env)

 # Enlarge each block by a single site.
 sys_enl = enlarge_block(sys)
 if sys is env: # no need to recalculate a second time
 env_enl = sys_enl
 else:
 env_enl = enlarge_block(env)

 assert is_valid_enlarged_block(sys_enl)
 assert is_valid_enlarged_block(env_enl)

 # Construct the full superblock Hamiltonian.
 m_sys_enl = sys_enl.basis_size
 m_env_enl = env_enl.basis_size
 sys_enl_op = sys_enl.operator_dict
 env_enl_op = env_enl.operator_dict
 superblock_hamiltonian = kron(sys_enl_op["H"], identity(m_env_enl)) + kron(identity(m_sys_enl), env_enl_op["H"]) + \
 H2(sys_enl_op["conn_Sz"], sys_enl_op["conn_Sp"], env_enl_op["conn_Sz"], env_enl_op["conn_Sp"])

 # Call ARPACK to find the superblock ground state. ("SA" means find the
 # "smallest in amplitude" eigenvalue.)
 (energy,), psi0 = eigsh(superblock_hamiltonian, k=1, which="SA")

 # Construct the reduced density matrix of the system by tracing out the
 # environment
 #
 # We want to make the (sys, env) indices correspond to (row, column) of a
 # matrix, respectively. Since the environment (column) index updates most
 # quickly in our Kronecker product structure, psi0 is thus row-major ("C
 # style").
 psi0 = psi0.reshape([sys_enl.basis_size, -1], order="C")
 rho = np.dot(psi0, psi0.conjugate().transpose())

 # Diagonalize the reduced density matrix and sort the eigenvectors by
 # eigenvalue.
 evals, evecs = np.linalg.eigh(rho)
 possible_eigenstates = []
 for eval, evec in zip(evals, evecs.transpose()):
 possible_eigenstates.append((eval, evec))
 possible_eigenstates.sort(reverse=True, key=lambda x: x[0]) # largest eigenvalue first

 # Build the transformation matrix from the `m` overall most significant
 # eigenvectors.
 my_m = min(len(possible_eigenstates), m)
 transformation_matrix = np.zeros((sys_enl.basis_size, my_m), dtype='d', order='F')
 for i, (eval, evec) in enumerate(possible_eigenstates[:my_m]):
 transformation_matrix[:, i] = evec

 truncation_error = 1 - sum([x[0] for x in possible_eigenstates[:my_m]])
 print("truncation error:", truncation_error)

 # Rotate and truncate each operator.
 new_operator_dict = {}
 for name, op in sys_enl.operator_dict.items():
 new_operator_dict[name] = rotate_and_truncate(op, transformation_matrix)

 newblock = Block(length=sys_enl.length,
 basis_size=my_m,
 operator_dict=new_operator_dict)

 return newblock, energy

def graphic(sys_block, env_block, sys_label="l"):
 """Returns a graphical representation of the DMRG step we are about to
 perform, using '=' to represent the system sites, '-' to represent the
 environment sites, and '**' to represent the two intermediate sites.
 """
 assert sys_label in ("l", "r")
 graphic = ("=" * sys_block.length) + "**" + ("-" * env_block.length)
 if sys_label == "r":
 # The system should be on the right and the environment should be on
 # the left, so reverse the graphic.
 graphic = graphic[::-1]
 return graphic

def infinite_system_algorithm(L, m):
 block = initial_block
 # Repeatedly enlarge the system by performing a single DMRG step, using a
 # reflection of the current block as the environment.
 while 2 * block.length < L:
 print("L =", block.length * 2 + 2)
 block, energy = single_dmrg_step(block, block, m=m)
 print("E/L =", energy / (block.length * 2))

def finite_system_algorithm(L, m_warmup, m_sweep_list):
 assert L % 2 == 0 # require that L is an even number

 # To keep things simple, this dictionary is not actually saved to disk, but
 # we use it to represent persistent storage.
 block_disk = {} # "disk" storage for Block objects

 # Use the infinite system algorithm to build up to desired size. Each time
 # we construct a block, we save it for future reference as both a left
 # ("l") and right ("r") block, as the infinite system algorithm assumes the
 # environment is a mirror image of the system.
 block = initial_block
 block_disk["l", block.length] = block
 block_disk["r", block.length] = block
 while 2 * block.length < L:
 # Perform a single DMRG step and save the new Block to "disk"
 print(graphic(block, block))
 block, energy = single_dmrg_step(block, block, m=m_warmup)
 print("E/L =", energy / (block.length * 2))
 block_disk["l", block.length] = block
 block_disk["r", block.length] = block

 # Now that the system is built up to its full size, we perform sweeps using
 # the finite system algorithm. At first the left block will act as the
 # system, growing at the expense of the right block (the environment), but
 # once we come to the end of the chain these roles will be reversed.
 sys_label, env_label = "l", "r"
 sys_block = block; del block # rename the variable
 for m in m_sweep_list:
 while True:
 # Load the appropriate environment block from "disk"
 env_block = block_disk[env_label, L - sys_block.length - 2]
 if env_block.length == 1:
 # We've come to the end of the chain, so we reverse course.
 sys_block, env_block = env_block, sys_block
 sys_label, env_label = env_label, sys_label

 # Perform a single DMRG step.
 print(graphic(sys_block, env_block, sys_label))
 sys_block, energy = single_dmrg_step(sys_block, env_block, m=m)

 print("E/L =", energy / L)

 # Save the block from this step to disk.
 block_disk[sys_label, sys_block.length] = sys_block

 # Check whether we just completed a full sweep.
 if sys_label == "l" and 2 * sys_block.length == L:
 break # escape from the "while True" loop

if __name__ == "__main__":
 np.set_printoptions(precision=10, suppress=True, threshold=10000, linewidth=300)

 #infinite_system_algorithm(L=100, m=20)
 finite_system_algorithm(L=20, m_warmup=10, m_sweep_list=[10, 20, 30, 40, 40])

simple_dmrg_03_conserved_quantum_numbers.py

(Raw download)

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

	#!/usr/bin/env python
#
Simple DMRG tutorial. This code integrates the following concepts:
- Infinite system algorithm
- Finite system algorithm
- Conserved quantum numbers
#
Copyright 2013 James R. Garrison and Ryan V. Mishmash.
Open source under the MIT license. Source code at
<https://github.com/simple-dmrg/simple-dmrg/>

This code will run under any version of Python >= 2.6. The following line
provides consistency between python2 and python3.
from __future__ import print_function, division # requires Python >= 2.6

numpy and scipy imports
import numpy as np
from scipy.sparse import kron, identity, lil_matrix
from scipy.sparse.linalg import eigsh # Lanczos routine from ARPACK

We will use python's "namedtuple" to represent the Block and EnlargedBlock
objects
from collections import namedtuple

Block = namedtuple("Block", ["length", "basis_size", "operator_dict", "basis_sector_array"])
EnlargedBlock = namedtuple("EnlargedBlock", ["length", "basis_size", "operator_dict", "basis_sector_array"])

def is_valid_block(block):
 if len(block.basis_sector_array) != block.basis_size:
 return False
 for op in block.operator_dict.values():
 if op.shape[0] != block.basis_size or op.shape[1] != block.basis_size:
 return False
 return True

This function should test the same exact things, so there is no need to
repeat its definition.
is_valid_enlarged_block = is_valid_block

Model-specific code for the Heisenberg XXZ chain
model_d = 2 # single-site basis size
single_site_sectors = np.array([0.5, -0.5]) # S^z sectors corresponding to the
 # single site basis elements

Sz1 = np.array([[0.5, 0], [0, -0.5]], dtype='d') # single-site S^z
Sp1 = np.array([[0, 1], [0, 0]], dtype='d') # single-site S^+

H1 = np.array([[0, 0], [0, 0]], dtype='d') # single-site portion of H is zero

def H2(Sz1, Sp1, Sz2, Sp2): # two-site part of H
 """Given the operators S^z and S^+ on two sites in different Hilbert spaces
 (e.g. two blocks), returns a Kronecker product representing the
 corresponding two-site term in the Hamiltonian that joins the two sites.
 """
 J = Jz = 1.
 return (
 (J / 2) * (kron(Sp1, Sp2.conjugate().transpose()) + kron(Sp1.conjugate().transpose(), Sp2)) +
 Jz * kron(Sz1, Sz2)
)

conn refers to the connection operator, that is, the operator on the edge of
the block, on the interior of the chain. We need to be able to represent S^z
and S^+ on that site in the current basis in order to grow the chain.
initial_block = Block(length=1, basis_size=model_d, operator_dict={
 "H": H1,
 "conn_Sz": Sz1,
 "conn_Sp": Sp1,
}, basis_sector_array=single_site_sectors)

def enlarge_block(block):
 """This function enlarges the provided Block by a single site, returning an
 EnlargedBlock.
 """
 mblock = block.basis_size
 o = block.operator_dict

 # Create the new operators for the enlarged block. Our basis becomes a
 # Kronecker product of the Block basis and the single-site basis. NOTE:
 # `kron` uses the tensor product convention making blocks of the second
 # array scaled by the first. As such, we adopt this convention for
 # Kronecker products throughout the code.
 enlarged_operator_dict = {
 "H": kron(o["H"], identity(model_d)) + kron(identity(mblock), H1) + H2(o["conn_Sz"], o["conn_Sp"], Sz1, Sp1),
 "conn_Sz": kron(identity(mblock), Sz1),
 "conn_Sp": kron(identity(mblock), Sp1),
 }

 # This array keeps track of which sector each element of the new basis is
 # in. `np.add.outer()` creates a matrix that adds each element of the
 # first vector with each element of the second, which when flattened
 # contains the sector of each basis element in the above Kronecker product.
 enlarged_basis_sector_array = np.add.outer(block.basis_sector_array, single_site_sectors).flatten()

 return EnlargedBlock(length=(block.length + 1),
 basis_size=(block.basis_size * model_d),
 operator_dict=enlarged_operator_dict,
 basis_sector_array=enlarged_basis_sector_array)

def rotate_and_truncate(operator, transformation_matrix):
 """Transforms the operator to the new (possibly truncated) basis given by
 `transformation_matrix`.
 """
 return transformation_matrix.conjugate().transpose().dot(operator.dot(transformation_matrix))

def index_map(array):
 """Given an array, returns a dictionary that allows quick access to the
 indices at which a given value occurs.

 Example usage:

 >>> by_index = index_map([3, 5, 5, 7, 3])
 >>> by_index[3]
 [0, 4]
 >>> by_index[5]
 [1, 2]
 >>> by_index[7]
 [3]
 """
 d = {}
 for index, value in enumerate(array):
 d.setdefault(value, []).append(index)
 return d

def single_dmrg_step(sys, env, m, target_Sz):
 """Performs a single DMRG step using `sys` as the system and `env` as the
 environment, keeping a maximum of `m` states in the new basis.
 """
 assert is_valid_block(sys)
 assert is_valid_block(env)

 # Enlarge each block by a single site.
 sys_enl = enlarge_block(sys)
 sys_enl_basis_by_sector = index_map(sys_enl.basis_sector_array)
 if sys is env: # no need to recalculate a second time
 env_enl = sys_enl
 env_enl_basis_by_sector = sys_enl_basis_by_sector
 else:
 env_enl = enlarge_block(env)
 env_enl_basis_by_sector = index_map(env_enl.basis_sector_array)

 assert is_valid_enlarged_block(sys_enl)
 assert is_valid_enlarged_block(env_enl)

 # Construct the full superblock Hamiltonian.
 m_sys_enl = sys_enl.basis_size
 m_env_enl = env_enl.basis_size
 sys_enl_op = sys_enl.operator_dict
 env_enl_op = env_enl.operator_dict
 superblock_hamiltonian = kron(sys_enl_op["H"], identity(m_env_enl)) + kron(identity(m_sys_enl), env_enl_op["H"]) + \
 H2(sys_enl_op["conn_Sz"], sys_enl_op["conn_Sp"], env_enl_op["conn_Sz"], env_enl_op["conn_Sp"])

 # Build up a "restricted" basis of states in the target sector and
 # reconstruct the superblock Hamiltonian in that sector.
 sector_indices = {} # will contain indices of the new (restricted) basis
 # for which the enlarged system is in a given sector
 restricted_basis_indices = [] # will contain indices of the old (full) basis, which we are mapping to
 for sys_enl_Sz, sys_enl_basis_states in sys_enl_basis_by_sector.items():
 sector_indices[sys_enl_Sz] = []
 env_enl_Sz = target_Sz - sys_enl_Sz
 if env_enl_Sz in env_enl_basis_by_sector:
 for i in sys_enl_basis_states:
 i_offset = m_env_enl * i # considers the tensor product structure of the superblock basis
 for j in env_enl_basis_by_sector[env_enl_Sz]:
 current_index = len(restricted_basis_indices) # about-to-be-added index of restricted_basis_indices
 sector_indices[sys_enl_Sz].append(current_index)
 restricted_basis_indices.append(i_offset + j)

 restricted_superblock_hamiltonian = superblock_hamiltonian[:, restricted_basis_indices][restricted_basis_indices, :]

 # Call ARPACK to find the superblock ground state. ("SA" means find the
 # "smallest in amplitude" eigenvalue.)
 (energy,), restricted_psi0 = eigsh(restricted_superblock_hamiltonian, k=1, which="SA")

 # Construct each block of the reduced density matrix of the system by
 # tracing out the environment
 rho_block_dict = {}
 for sys_enl_Sz, indices in sector_indices.items():
 if indices: # if indices is nonempty
 psi0_sector = restricted_psi0[indices, :]
 # We want to make the (sys, env) indices correspond to (row,
 # column) of a matrix, respectively. Since the environment
 # (column) index updates most quickly in our Kronecker product
 # structure, psi0_sector is thus row-major ("C style").
 psi0_sector = psi0_sector.reshape([len(sys_enl_basis_by_sector[sys_enl_Sz]), -1], order="C")
 rho_block_dict[sys_enl_Sz] = np.dot(psi0_sector, psi0_sector.conjugate().transpose())

 # Diagonalize each block of the reduced density matrix and sort the
 # eigenvectors by eigenvalue.
 possible_eigenstates = []
 for Sz_sector, rho_block in rho_block_dict.items():
 evals, evecs = np.linalg.eigh(rho_block)
 current_sector_basis = sys_enl_basis_by_sector[Sz_sector]
 for eval, evec in zip(evals, evecs.transpose()):
 possible_eigenstates.append((eval, evec, Sz_sector, current_sector_basis))
 possible_eigenstates.sort(reverse=True, key=lambda x: x[0]) # largest eigenvalue first

 # Build the transformation matrix from the `m` overall most significant
 # eigenvectors. It will have sparse structure due to the conserved quantum
 # number.
 my_m = min(len(possible_eigenstates), m)
 transformation_matrix = lil_matrix((sys_enl.basis_size, my_m), dtype='d')
 new_sector_array = np.zeros((my_m,), dtype='d') # lists the sector of each
 # element of the new/truncated basis
 for i, (eval, evec, Sz_sector, current_sector_basis) in enumerate(possible_eigenstates[:my_m]):
 for j, v in zip(current_sector_basis, evec):
 transformation_matrix[j, i] = v
 new_sector_array[i] = Sz_sector
 # Convert the transformation matrix to a more efficient internal
 # representation. `lil_matrix` is good for constructing a sparse matrix
 # efficiently, but `csr_matrix` is better for performing quick
 # multiplications.
 transformation_matrix = transformation_matrix.tocsr()

 truncation_error = 1 - sum([x[0] for x in possible_eigenstates[:my_m]])
 print("truncation error:", truncation_error)

 # Rotate and truncate each operator.
 new_operator_dict = {}
 for name, op in sys_enl.operator_dict.items():
 new_operator_dict[name] = rotate_and_truncate(op, transformation_matrix)

 newblock = Block(length=sys_enl.length,
 basis_size=my_m,
 operator_dict=new_operator_dict,
 basis_sector_array=new_sector_array)

 return newblock, energy

def graphic(sys_block, env_block, sys_label="l"):
 """Returns a graphical representation of the DMRG step we are about to
 perform, using '=' to represent the system sites, '-' to represent the
 environment sites, and '**' to represent the two intermediate sites.
 """
 assert sys_label in ("l", "r")
 graphic = ("=" * sys_block.length) + "**" + ("-" * env_block.length)
 if sys_label == "r":
 # The system should be on the right and the environment should be on
 # the left, so reverse the graphic.
 graphic = graphic[::-1]
 return graphic

def infinite_system_algorithm(L, m, target_Sz):
 block = initial_block
 # Repeatedly enlarge the system by performing a single DMRG step, using a
 # reflection of the current block as the environment.
 while 2 * block.length < L:
 current_L = 2 * block.length + 2 # current superblock length
 current_target_Sz = int(target_Sz) * current_L // L
 print("L =", current_L)
 block, energy = single_dmrg_step(block, block, m=m, target_Sz=current_target_Sz)
 print("E/L =", energy / current_L)

def finite_system_algorithm(L, m_warmup, m_sweep_list, target_Sz):
 assert L % 2 == 0 # require that L is an even number

 # To keep things simple, this dictionary is not actually saved to disk, but
 # we use it to represent persistent storage.
 block_disk = {} # "disk" storage for Block objects

 # Use the infinite system algorithm to build up to desired size. Each time
 # we construct a block, we save it for future reference as both a left
 # ("l") and right ("r") block, as the infinite system algorithm assumes the
 # environment is a mirror image of the system.
 block = initial_block
 block_disk["l", block.length] = block
 block_disk["r", block.length] = block
 while 2 * block.length < L:
 # Perform a single DMRG step and save the new Block to "disk"
 print(graphic(block, block))
 current_L = 2 * block.length + 2 # current superblock length
 current_target_Sz = int(target_Sz) * current_L // L
 block, energy = single_dmrg_step(block, block, m=m_warmup, target_Sz=current_target_Sz)
 print("E/L =", energy / current_L)
 block_disk["l", block.length] = block
 block_disk["r", block.length] = block

 # Now that the system is built up to its full size, we perform sweeps using
 # the finite system algorithm. At first the left block will act as the
 # system, growing at the expense of the right block (the environment), but
 # once we come to the end of the chain these roles will be reversed.
 sys_label, env_label = "l", "r"
 sys_block = block; del block # rename the variable
 for m in m_sweep_list:
 while True:
 # Load the appropriate environment block from "disk"
 env_block = block_disk[env_label, L - sys_block.length - 2]
 if env_block.length == 1:
 # We've come to the end of the chain, so we reverse course.
 sys_block, env_block = env_block, sys_block
 sys_label, env_label = env_label, sys_label

 # Perform a single DMRG step.
 print(graphic(sys_block, env_block, sys_label))
 sys_block, energy = single_dmrg_step(sys_block, env_block, m=m, target_Sz=target_Sz)

 print("E/L =", energy / L)

 # Save the block from this step to disk.
 block_disk[sys_label, sys_block.length] = sys_block

 # Check whether we just completed a full sweep.
 if sys_label == "l" and 2 * sys_block.length == L:
 break # escape from the "while True" loop

if __name__ == "__main__":
 np.set_printoptions(precision=10, suppress=True, threshold=10000, linewidth=300)

 #infinite_system_algorithm(L=100, m=20, target_Sz=0)
 finite_system_algorithm(L=20, m_warmup=10, m_sweep_list=[10, 20, 30, 40, 40], target_Sz=0)

simple_dmrg_04_eigenstate_prediction.py

(Raw download)

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374

	#!/usr/bin/env python
#
Simple DMRG tutorial. This code integrates the following concepts:
- Infinite system algorithm
- Finite system algorithm
- Conserved quantum numbers
- Eigenstate prediction
#
Copyright 2013 James R. Garrison and Ryan V. Mishmash.
Open source under the MIT license. Source code at
<https://github.com/simple-dmrg/simple-dmrg/>

This code will run under any version of Python >= 2.6. The following line
provides consistency between python2 and python3.
from __future__ import print_function, division # requires Python >= 2.6

numpy and scipy imports
import numpy as np
from scipy.sparse import kron, identity, lil_matrix
from scipy.sparse.linalg import eigsh # Lanczos routine from ARPACK

We will use python's "namedtuple" to represent the Block and EnlargedBlock
objects
from collections import namedtuple

Block = namedtuple("Block", ["length", "basis_size", "operator_dict", "basis_sector_array"])
EnlargedBlock = namedtuple("EnlargedBlock", ["length", "basis_size", "operator_dict", "basis_sector_array"])

def is_valid_block(block):
 if len(block.basis_sector_array) != block.basis_size:
 return False
 for op in block.operator_dict.values():
 if op.shape[0] != block.basis_size or op.shape[1] != block.basis_size:
 return False
 return True

This function should test the same exact things, so there is no need to
repeat its definition.
is_valid_enlarged_block = is_valid_block

Model-specific code for the Heisenberg XXZ chain
model_d = 2 # single-site basis size
single_site_sectors = np.array([0.5, -0.5]) # S^z sectors corresponding to the
 # single site basis elements

Sz1 = np.array([[0.5, 0], [0, -0.5]], dtype='d') # single-site S^z
Sp1 = np.array([[0, 1], [0, 0]], dtype='d') # single-site S^+

H1 = np.array([[0, 0], [0, 0]], dtype='d') # single-site portion of H is zero

def H2(Sz1, Sp1, Sz2, Sp2): # two-site part of H
 """Given the operators S^z and S^+ on two sites in different Hilbert spaces
 (e.g. two blocks), returns a Kronecker product representing the
 corresponding two-site term in the Hamiltonian that joins the two sites.
 """
 J = Jz = 1.
 return (
 (J / 2) * (kron(Sp1, Sp2.conjugate().transpose()) + kron(Sp1.conjugate().transpose(), Sp2)) +
 Jz * kron(Sz1, Sz2)
)

conn refers to the connection operator, that is, the operator on the edge of
the block, on the interior of the chain. We need to be able to represent S^z
and S^+ on that site in the current basis in order to grow the chain.
initial_block = Block(length=1, basis_size=model_d, operator_dict={
 "H": H1,
 "conn_Sz": Sz1,
 "conn_Sp": Sp1,
}, basis_sector_array=single_site_sectors)

def enlarge_block(block):
 """This function enlarges the provided Block by a single site, returning an
 EnlargedBlock.
 """
 mblock = block.basis_size
 o = block.operator_dict

 # Create the new operators for the enlarged block. Our basis becomes a
 # Kronecker product of the Block basis and the single-site basis. NOTE:
 # `kron` uses the tensor product convention making blocks of the second
 # array scaled by the first. As such, we adopt this convention for
 # Kronecker products throughout the code.
 enlarged_operator_dict = {
 "H": kron(o["H"], identity(model_d)) + kron(identity(mblock), H1) + H2(o["conn_Sz"], o["conn_Sp"], Sz1, Sp1),
 "conn_Sz": kron(identity(mblock), Sz1),
 "conn_Sp": kron(identity(mblock), Sp1),
 }

 # This array keeps track of which sector each element of the new basis is
 # in. `np.add.outer()` creates a matrix that adds each element of the
 # first vector with each element of the second, which when flattened
 # contains the sector of each basis element in the above Kronecker product.
 enlarged_basis_sector_array = np.add.outer(block.basis_sector_array, single_site_sectors).flatten()

 return EnlargedBlock(length=(block.length + 1),
 basis_size=(block.basis_size * model_d),
 operator_dict=enlarged_operator_dict,
 basis_sector_array=enlarged_basis_sector_array)

def rotate_and_truncate(operator, transformation_matrix):
 """Transforms the operator to the new (possibly truncated) basis given by
 `transformation_matrix`.
 """
 return transformation_matrix.conjugate().transpose().dot(operator.dot(transformation_matrix))

def index_map(array):
 """Given an array, returns a dictionary that allows quick access to the
 indices at which a given value occurs.

 Example usage:

 >>> by_index = index_map([3, 5, 5, 7, 3])
 >>> by_index[3]
 [0, 4]
 >>> by_index[5]
 [1, 2]
 >>> by_index[7]
 [3]
 """
 d = {}
 for index, value in enumerate(array):
 d.setdefault(value, []).append(index)
 return d

def single_dmrg_step(sys, env, m, target_Sz, psi0_guess=None):
 """Performs a single DMRG step using `sys` as the system and `env` as the
 environment, keeping a maximum of `m` states in the new basis. If
 `psi0_guess` is provided, it will be used as a starting vector for the
 Lanczos algorithm.
 """
 assert is_valid_block(sys)
 assert is_valid_block(env)

 # Enlarge each block by a single site.
 sys_enl = enlarge_block(sys)
 sys_enl_basis_by_sector = index_map(sys_enl.basis_sector_array)
 if sys is env: # no need to recalculate a second time
 env_enl = sys_enl
 env_enl_basis_by_sector = sys_enl_basis_by_sector
 else:
 env_enl = enlarge_block(env)
 env_enl_basis_by_sector = index_map(env_enl.basis_sector_array)

 assert is_valid_enlarged_block(sys_enl)
 assert is_valid_enlarged_block(env_enl)

 # Construct the full superblock Hamiltonian.
 m_sys_enl = sys_enl.basis_size
 m_env_enl = env_enl.basis_size
 sys_enl_op = sys_enl.operator_dict
 env_enl_op = env_enl.operator_dict
 superblock_hamiltonian = kron(sys_enl_op["H"], identity(m_env_enl)) + kron(identity(m_sys_enl), env_enl_op["H"]) + \
 H2(sys_enl_op["conn_Sz"], sys_enl_op["conn_Sp"], env_enl_op["conn_Sz"], env_enl_op["conn_Sp"])

 # Build up a "restricted" basis of states in the target sector and
 # reconstruct the superblock Hamiltonian in that sector.
 sector_indices = {} # will contain indices of the new (restricted) basis
 # for which the enlarged system is in a given sector
 restricted_basis_indices = [] # will contain indices of the old (full) basis, which we are mapping to
 for sys_enl_Sz, sys_enl_basis_states in sys_enl_basis_by_sector.items():
 sector_indices[sys_enl_Sz] = []
 env_enl_Sz = target_Sz - sys_enl_Sz
 if env_enl_Sz in env_enl_basis_by_sector:
 for i in sys_enl_basis_states:
 i_offset = m_env_enl * i # considers the tensor product structure of the superblock basis
 for j in env_enl_basis_by_sector[env_enl_Sz]:
 current_index = len(restricted_basis_indices) # about-to-be-added index of restricted_basis_indices
 sector_indices[sys_enl_Sz].append(current_index)
 restricted_basis_indices.append(i_offset + j)

 restricted_superblock_hamiltonian = superblock_hamiltonian[:, restricted_basis_indices][restricted_basis_indices, :]
 if psi0_guess is not None:
 restricted_psi0_guess = psi0_guess[restricted_basis_indices]
 else:
 restricted_psi0_guess = None

 # Call ARPACK to find the superblock ground state. ("SA" means find the
 # "smallest in amplitude" eigenvalue.)
 (energy,), restricted_psi0 = eigsh(restricted_superblock_hamiltonian, k=1, which="SA", v0=restricted_psi0_guess)

 # Construct each block of the reduced density matrix of the system by
 # tracing out the environment
 rho_block_dict = {}
 for sys_enl_Sz, indices in sector_indices.items():
 if indices: # if indices is nonempty
 psi0_sector = restricted_psi0[indices, :]
 # We want to make the (sys, env) indices correspond to (row,
 # column) of a matrix, respectively. Since the environment
 # (column) index updates most quickly in our Kronecker product
 # structure, psi0_sector is thus row-major ("C style").
 psi0_sector = psi0_sector.reshape([len(sys_enl_basis_by_sector[sys_enl_Sz]), -1], order="C")
 rho_block_dict[sys_enl_Sz] = np.dot(psi0_sector, psi0_sector.conjugate().transpose())

 # Diagonalize each block of the reduced density matrix and sort the
 # eigenvectors by eigenvalue.
 possible_eigenstates = []
 for Sz_sector, rho_block in rho_block_dict.items():
 evals, evecs = np.linalg.eigh(rho_block)
 current_sector_basis = sys_enl_basis_by_sector[Sz_sector]
 for eval, evec in zip(evals, evecs.transpose()):
 possible_eigenstates.append((eval, evec, Sz_sector, current_sector_basis))
 possible_eigenstates.sort(reverse=True, key=lambda x: x[0]) # largest eigenvalue first

 # Build the transformation matrix from the `m` overall most significant
 # eigenvectors. It will have sparse structure due to the conserved quantum
 # number.
 my_m = min(len(possible_eigenstates), m)
 transformation_matrix = lil_matrix((sys_enl.basis_size, my_m), dtype='d')
 new_sector_array = np.zeros((my_m,), dtype='d') # lists the sector of each
 # element of the new/truncated basis
 for i, (eval, evec, Sz_sector, current_sector_basis) in enumerate(possible_eigenstates[:my_m]):
 for j, v in zip(current_sector_basis, evec):
 transformation_matrix[j, i] = v
 new_sector_array[i] = Sz_sector
 # Convert the transformation matrix to a more efficient internal
 # representation. `lil_matrix` is good for constructing a sparse matrix
 # efficiently, but `csr_matrix` is better for performing quick
 # multiplications.
 transformation_matrix = transformation_matrix.tocsr()

 truncation_error = 1 - sum([x[0] for x in possible_eigenstates[:my_m]])
 print("truncation error:", truncation_error)

 # Rotate and truncate each operator.
 new_operator_dict = {}
 for name, op in sys_enl.operator_dict.items():
 new_operator_dict[name] = rotate_and_truncate(op, transformation_matrix)

 newblock = Block(length=sys_enl.length,
 basis_size=my_m,
 operator_dict=new_operator_dict,
 basis_sector_array=new_sector_array)

 # Construct psi0 (that is, in the full superblock basis) so we can use it
 # later for eigenstate prediction.
 psi0 = np.zeros([m_sys_enl * m_env_enl, 1], dtype='d')
 for i, z in enumerate(restricted_basis_indices):
 psi0[z, 0] = restricted_psi0[i, 0]
 if psi0_guess is not None:
 overlap = np.absolute(np.dot(psi0_guess.conjugate().transpose(), psi0).item())
 overlap /= np.linalg.norm(psi0_guess) * np.linalg.norm(psi0) # normalize it
 print("overlap |<psi0_guess|psi0>| =", overlap)

 return newblock, energy, transformation_matrix, psi0

def graphic(sys_block, env_block, sys_label="l"):
 """Returns a graphical representation of the DMRG step we are about to
 perform, using '=' to represent the system sites, '-' to represent the
 environment sites, and '**' to represent the two intermediate sites.
 """
 assert sys_label in ("l", "r")
 graphic = ("=" * sys_block.length) + "**" + ("-" * env_block.length)
 if sys_label == "r":
 # The system should be on the right and the environment should be on
 # the left, so reverse the graphic.
 graphic = graphic[::-1]
 return graphic

def infinite_system_algorithm(L, m, target_Sz):
 block = initial_block
 # Repeatedly enlarge the system by performing a single DMRG step, using a
 # reflection of the current block as the environment.
 while 2 * block.length < L:
 current_L = 2 * block.length + 2 # current superblock length
 current_target_Sz = int(target_Sz) * current_L // L
 print("L =", current_L)
 block, energy, transformation_matrix, psi0 = single_dmrg_step(block, block, m=m, target_Sz=current_target_Sz)
 print("E/L =", energy / current_L)

def finite_system_algorithm(L, m_warmup, m_sweep_list, target_Sz):
 assert L % 2 == 0 # require that L is an even number

 # To keep things simple, these dictionaries are not actually saved to disk,
 # but they are used to represent persistent storage.
 block_disk = {} # "disk" storage for Block objects
 trmat_disk = {} # "disk" storage for transformation matrices

 # Use the infinite system algorithm to build up to desired size. Each time
 # we construct a block, we save it for future reference as both a left
 # ("l") and right ("r") block, as the infinite system algorithm assumes the
 # environment is a mirror image of the system.
 block = initial_block
 block_disk["l", block.length] = block
 block_disk["r", block.length] = block
 while 2 * block.length < L:
 # Perform a single DMRG step and save the new Block to "disk"
 print(graphic(block, block))
 current_L = 2 * block.length + 2 # current superblock length
 current_target_Sz = int(target_Sz) * current_L // L
 block, energy, transformation_matrix, psi0 = single_dmrg_step(block, block, m=m_warmup, target_Sz=current_target_Sz)
 print("E/L =", energy / current_L)
 block_disk["l", block.length] = block
 block_disk["r", block.length] = block

 # Now that the system is built up to its full size, we perform sweeps using
 # the finite system algorithm. At first the left block will act as the
 # system, growing at the expense of the right block (the environment), but
 # once we come to the end of the chain these roles will be reversed.
 sys_label, env_label = "l", "r"
 sys_block = block; del block # rename the variable
 sys_trmat = None
 for m in m_sweep_list:
 while True:
 # Load the appropriate environment block from "disk"
 env_block = block_disk[env_label, L - sys_block.length - 2]
 env_trmat = trmat_disk.get((env_label, L - sys_block.length - 1))

 # If possible, predict an estimate of the ground state wavefunction
 # from the previous step's psi0 and known transformation matrices.
 if psi0 is None or sys_trmat is None or env_trmat is None:
 psi0_guess = None
 else:
 # psi0 currently looks e.g. like ===**--- but we need to
 # transform it to look like ====**-- using the relevant
 # transformation matrices and paying careful attention to the
 # tensor product structure.
 #
 # Keep in mind that the tensor product of the superblock is
 # (sys_enl_block, env_enl_block), which is equal to
 # (sys_block, sys_extra_site, env_block, env_extra_site).
 # Note that this does *not* correspond to left-to-right order
 # on the chain.
 #
 # First we reshape the psi0 vector into a matrix with rows
 # corresponding to the enlarged system basis and columns
 # corresponding to the enlarged environment basis.
 psi0_a = psi0.reshape((-1, env_trmat.shape[1] * model_d), order="C")
 # Now we transform the enlarged system block into a system
 # block, so that psi0_b looks like ====*-- (with only one
 # intermediate site).
 psi0_b = sys_trmat.conjugate().transpose().dot(psi0_a)
 # At the moment, the tensor product goes as (sys_block,
 # env_enl_block) == (sys_block, env_block, extra_site), but we
 # need it to look like (sys_enl_block, env_block) ==
 # (sys_block, extra_site, env_block). In other words, the
 # single intermediate site should now be part of a new enlarged
 # system, not part of the enlarged environment.
 psi0_c = psi0_b.reshape((-1, env_trmat.shape[1], model_d), order="C").transpose(0, 2, 1)
 # Now we reshape the psi0 vector into a matrix with rows
 # corresponding to the enlarged system and columns
 # corresponding to the environment block.
 psi0_d = psi0_c.reshape((-1, env_trmat.shape[1]), order="C")
 # Finally, we transform the environment block into the basis of
 # an enlarged block the so that psi0_guess has the tensor
 # product structure of ====**--.
 psi0_guess = env_trmat.dot(psi0_d.transpose()).transpose().reshape((-1, 1))

 if env_block.length == 1:
 # We've come to the end of the chain, so we reverse course.
 sys_block, env_block = env_block, sys_block
 sys_label, env_label = env_label, sys_label
 if psi0_guess is not None:
 # Re-order psi0_guess based on the new sys, env labels.
 psi0_guess = psi0_guess.reshape((sys_trmat.shape[1] * model_d, env_trmat.shape[0]), order="C").transpose().reshape((-1, 1))

 # Perform a single DMRG step.
 print(graphic(sys_block, env_block, sys_label))
 sys_block, energy, sys_trmat, psi0 = single_dmrg_step(sys_block, env_block, m=m, target_Sz=target_Sz, psi0_guess=psi0_guess)

 print("E/L =", energy / L)

 # Save the block and transformation matrix from this step to disk.
 block_disk[sys_label, sys_block.length] = sys_block
 trmat_disk[sys_label, sys_block.length] = sys_trmat

 # Check whether we just completed a full sweep.
 if sys_label == "l" and 2 * sys_block.length == L:
 break # escape from the "while True" loop

if __name__ == "__main__":
 np.set_printoptions(precision=10, suppress=True, threshold=10000, linewidth=300)

 #infinite_system_algorithm(L=100, m=20, target_Sz=0)
 finite_system_algorithm(L=20, m_warmup=10, m_sweep_list=[10, 20, 30, 40, 40], target_Sz=0)

Index

 _static/comment.png

_static/down.png

_static/up-pressed.png

_images/math/616f7e759cbb0799facbc421cc63761eebc330ca.png

_images/math/0498450060cd327a4912b598579fd1837709e441.png
1/L

_images/math/9abed5fe34c3a74b48129646c9b68e6be7fc8ab0.png

_images/math/65868d23a5bfe5b3b2d819386b19c14fa36af134.png

_images/math/6d11ef693c86e2982c8f013160ecc1e2a59ddb5f.png
E/L = —0.40876250668

_images/math/8747ee4b100f577cfc37932dd1b44d2043fd13bd.png

_images/math/a0f61e7e1463c6dea72e425f7bffe7bb5543da20.png

_images/math/e3db8f64dcdba16e369a564df9a78475a3bd1513.png
S 1 L
,En ~sin

F

I
L

_images/math/3a5a8477c8e81d233d705f6be8ba0f1d6db702c6.png

_images/math/6751ebde69d947baa993e9217f88120eb481dc83.png

nav.xhtml

 Table of Contents

 		SIMPLE DMRG

 		Using the code

 		Exercises

 		Day 1

 		Day 2

 		Python cheatsheet

 		Basics

 		Lists, tuples, and loops

 		Looping over lists and tuples

 		Dictionaries

 		Looping over dictionaries

 		Functions

 		numpy arrays

 		Array storage order

 		Mathematical constants

 		Experimentation and getting help

 		Additional information on DMRG

 		References

 		Links

 		Source code

 		simple_dmrg_01_infinite_system.py

 		simple_dmrg_02_finite_system.py

 		simple_dmrg_03_conserved_quantum_numbers.py

 		simple_dmrg_04_eigenstate_prediction.py

_images/math/f713569b659bc2d4a37cf551300fa96ffdf70800.png

_images/math/2a00b7d1532bfe311cb79ed0f7a5e90fd41e5bbd.png

_images/math/a581f053bbfa5115f42c13094857cdd12a37ec49.png

_images/math/79266b30ec32475929bcc0511434ef64a8fd0c39.png

_images/math/c1e46d807decd968eb81de18335e051e478da405.png
m ~ 10

_images/math/0a5711c7a37994043b2bc3bb374adca232491762.png

_images/math/60a150e3ced2a2e9a63f29ab8f51de8492c94d82.png

_images/math/17b48160da617400189c9b161bb0b0455ab4be1d.png
J.JJ =1

_images/math/cabaea4f4c8ba6d97bfb3055f1a0f3bc14d55e9b.png
1+ 1

_images/math/f574498915fa9e02eeb5141c24835d077eba3e75.png

_images/math/685443c28f8a2211a2be859273fef92d6c73f8c5.png

_images/math/190933c4a98a732568599cbbee7e988ce61a171b.png
1+ 2

_images/math/40a369c88b2f2dc9ed528856324a89231c80944d.png
1+ 3

_images/math/0092947aa2525c4be8f9007087d9c2c195390f9d.png

_images/math/db803e05b4ab66ef84aa0e7dcf71a6c1b2c3d0f7.png
E/L =020—In —0.443147

_images/math/188c175aac0a8a9c22499336711b5d7256407254.png

_images/math/111c058fc3903654a3f376fd7b029829beeb296f.png

_images/math/11a85f3c69ae6702cb1d99d3de451913b8f84c04.png

_images/math/8bb6f05f7571368dd6d13dfb4b95cd66acff9b53.png
(Sio - S11) = —0.363847565413

_static/comment-close.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/comment-bright.png

_static/file.png

_static/plus.png

